# NIRMALA COLLEGE OF PHARMACY MUVATTUPUZHA 



## NATIONAL CONFERENCE

## Nano-based Drug Delivery

Systems; Recent Developments and Future Prospects

## 7 OCTOBER 2023

ASSOCIATING PARTNERS

INDIAN PHARMACEUTICAL ASSOCIATION


JOURNAL OF INNOVATIONS IN APPLIED PHARMACEUTICAL SCIENCES



ASSESSMENT OF PATIENT KNOWLEDGE, PRACTICE AND ADVERSE EVENTS OF INSULIN ADMINISTRATION AND STORAGE TECHNIQUES IN PATIENTS WITH DIABETES
ANTRIYA ANNIE TOM, NAMITHA ANTONY, PAVITHRA ASHOK, MUHAMMAD ABDUL KHADIR PS, JUHY JOJO

## 因 VIEW PDF

FORMULATION AND EVALUATION OF HERBAL AFTERSHAVE GEL
CELU MARIYA FRANCIS, RIYA GEORGE, ANASWARA SANKAR, ANCYIJ, MANJU MARIA MATHEWS, BADMANABANR Pages 47-50回 VIEW PDF

EFFIIIENT MICROWAVE SYNTHESIS OF COUMARIN DERIVATIVES WITH EVALUATION OF THEIR ANTIOXIDANT AND ANTI－ INFLAMMATORY PROPERTIES
ANZIYA P A，SARANYA T S，ANJALI K，ANJALI KRISHNA，SINI BABY，DIVINE P DANIEL Pages 124－130
COSMETIC USE RELATED ADVERSE EVENTS AND NEED FOR COSMETOVIGILANCE
MERRIN JOSEPH，KARISHMA SHAJI，MAHIN TM，NANDANA P B，KRISHNA DAS Pages 64－71

## （ VIEW PDF

A RETROSPECTIVE STUDY OF CLINICAL PROFILE OF VIPER BITE CASES IN SELECTED HOSPITALS IN CENTRAL KERALA
ANUMOL SAJU，ANTRIYA ANNIE TOM，ABY PAUL，SWAPNA SAJU，DONA JOHNSON，JESYLN JOE THOMAS，KUTTIKKADEN Pages 72－74 JOY STEFFI，JOYAL M JOLL

FORMULATION AND EVALUATION OF HERBAL TOOTHPASTE CONTAINING EUPATORIUM TRIPLINERVISLEAF EXTRACT
VIDYA PETER，ROSNA BABU，SHERRY SEBASTIAN，ANGEL JAIMON，ANGEL JAIMON，ANAGHA V T，JEEVAN SAJEEV Pages 36－41

## 图 VIEW PDF

IN VITRO SCREENING OF ICACINACEOUS PLANTS INDIGENOUS TO KERALA
DR．ELIZABETH ABRAHAM P，FRINTO FRANCIS，PRADEEP R NAIR，ATHUL RAJ，RAJI RAJAN，ANAMIKA K．NAIR，Pages 51－58 PROF．DR．BADMANABAN．R

## © VIEW PDF

FORMULATION AND EVALUATION OF BUCCAL FILM OF AN ANTIHYPERTENSIVE DRUG
ASHINAA BENEDICT，IRIN ROSE PAUL，DR．MANJU MARIA MATHEWS，DR．BADMANABAN R

## 图 VIEW PDF

A PROSPECTIVE SURVEY TO ASCERTAIN THE SYMPTOMS，HEALTH ISSUES AND SUBSEQUENT OTC MEDICTION USAGE DURING MENSTRUATION AMONG COLLEGE STUDENTS
MINTU GEORGE，ANAGHA MELBIN，MARY PAUL DOMINIC，RESHMA DOMINIC，AYSHA SAJA P．S，JOBIN KUNJUMON Pages 81－84 VILAPURATHU

A CROSS SECTIONAL STUDY TO ANALYSE THE ADR REPORTED IN A HOSPITAL DURING THE PAST THREE YEARS
SANGEETHA SUKUMARAN，VARSHA ELIZABETH JOBY，AMALA JOSEPH，APARNA JESTIN，JITHIN N P，SUMAYYA B Pages 85－89 MUHAMMED，SUNU SEBASTIAN，JOBIN KUNJUMON VILAPURATHU

```
* VIEW PDF
```

FORMULATION AND EVALUATION OF PREUNGUAL DELIVERY SYSTEM CONTAINING EUGENOL FOR THE TREATMENT OF ONYCHOMYCOSIS
MINI ELIAS，FLOWERLET MATHEW，GOURISREE T，ANILA RAJAN，ASHLY DAVIS Pages 90－94

## （⿴囗大夂⺀大 VIEW PDF

FORMULATION AND EVALUATION OF FLOATING CONTROLLED DRUG DELIVERY OF ANTI－ULCER DRUG LOADED MICROBALLOONS
BINDUMOL K C，FLOWERLET MATHEW，SHALOM SUNIL，ANGEL JOSE

PREPARATION AND EVALUATION OF FLOATING DRUG DELIVERY SYSTEM（FDDS）CONTAINING AN ANTIVIRAL DRUG
TEENA MOHAN，MARIYA SUNNY，MANJU MARIA MATHEWS，BADMANABAN R Pages 105－109

## 因 VIEW PDF

FORMULATION AND EVALUATION OF CONTROLLED POROSITY ORAL OSMOTIC PUMP TABLETS OF FUROSEMIDE TEENA CHACKOCHEN THEKKAL，REBA RENJU，MANJU MARIA MATHEWS，BADMANABAN R

## © VIEW PDF

FORMULATION AND EVALUATION OF TOPICAL GELS INCORPORATED WITH SOLID DISPERSIONS OF AN ANTIINFLAMMATORY DRUG
SETHU LEKSHMI，THERASE JOSE，MANJU MARIA MATHEWS，BADMANABAN R Pages 114－119 ［⿴囗大 VIEW PDF


# Journal of Innovations in Applied 

# COMPARATIVE INSILICO DOCKING STUDY INVOLVING ANTAGONISTIC ACTIVITY OF COUMARINDERIVATIVES ON EGFR AND CDK2 

Riya Ann Thomas ${ }^{1}$, Eva Sara Sunil ${ }^{1}$, Anna Abel Fernandez ${ }^{1}$, Soorya Anil ${ }^{11}$, Anjana Antony ${ }^{1}$, Ann Maria Davis ${ }^{1}$, Godwin Thomas ${ }^{1}$, Saranya T S ${ }^{* 1}$, Greeshma Sreeram ${ }^{1}$, Elizabeth Abraham P ${ }^{2}$
${ }^{*}$ Dept of Pharmaceutical Chemistry, Nirmala College of Pharmacy, Muvattupuzha, Kerala
${ }^{2}$ Dept of Pharmacology, Nirmala College of Pharmacy, Muvattupuzha, Kerala


#### Abstract

\section*{Article History}

Received: 07-10-2023 Revised: 27-10-2023 Accepted: 13-10-2023 Keywords: Coumarin, EGFR, CDK2, AutoDock4, Piroxicam.

Abstract Epidemiological evidence suggests that about $25 \%$ of cancer occurs due to chronic inflammation, thus it is clear that cancer and inflammation are related. Piroxicam is the one of the drug that is used in the treatment of both cancer and inflammation, but it is having some side effects like constipation, blurring of vision ,skin rashes etc. Coumarin is having both anti-inflammatory and anti-cancer activity so the purpose of this study is to screen the best target among EGFR and CDK2. Docking analysis was carried out using AutoDock4. From the study it was found that EGFR showed better result compare to CDK2. Also methyl substitution at $8^{\text {th }}$ position and chlorine substitution at $5^{\text {th }}$ position of coumarin showed better activity than standard drug piroxicam and phytoconsitutents isofraxidin andscopoletin.


This article is licensed under a Creative Commons Attribution-Non Commercial 4.0 International License. Copyright © 2023 Author[s] retain the copyright of this article.

## *Corresponding Author

Saranya T S
https://doi.org/10.37022/iiaps.v8i3-S.518

## Production and Hosted by

www.saap.org.in

## Introduction

Inflammation is the body's response to internal and external environment in order to eliminate unwanted agents from body and thus restore the tissue physiology. Chronic inflammatory conditions in selected organs increase the risk of cancer. EGFR (epidermal growth factor) plays an important role in inflammation as well as cancer. EGFR belongs to HER family of receptors, in which EGFR is activated by binding to EGF which cause receptor dimerization and tyrosine autophosporylation leading to cell proliferation [4, 5].
CDK2 belongs to family protein kinases, it is also known as cell division protein kinase-2. Initially it was discovered for its action in regulating cell cycle later it was found that inhibition of this protein lead to variety of action like anti-cancer, antiinflammatory action etc. CDKs require cyclin for its activation. CDK2 inhibitors produce anti-inflammatory activity by inhibiting MAPK, NF-Kb and PI3K signalling pathways. In the case of cancer CDK2 inhibitors prevent the stimulation of the cell to enter in to $s$ phase of cell cycle and reduce cell proliferation [6, 7]

Computer -aided drug design (CADD) uses computational chemistry to discover, enhance or to study drug and related biologically active molecules. The problems associated with the conventional method of drug designing are overcome by the CADD. Two methods in CADD are structural based and ligand based drug design. Structural based drug design depends on the three dimensional structure of biological target whereas ligand based drug design depends on molecules that bind to biological target [8]. In this work we have carried out the study on coumarin derivatives and the standard drug selected for the study was piroxicam [9] .The phytoconstituents selected for the study are scopoletin and isofraxidin [10].

## Materials and methods

Twenty eight lead molecules were designed by using chemsketch by giving substitution on 5th, 6th, 7th and 8th position of the compound having coumarin nucleus as shown in fig: 1


Fig.13-[(2E)-3-phenylprop-2-enoyl]-2H-chromen-2-one Selection of target
Primary and Secondary Structure Analysis
Targets were selected from PDB after carrying out the primary and secondary structure analysis. PDB is a crystallographic database or the three-dimensional structural data of large biomolecules such as proteins and nucleic acids.

Primary structure analysis was done by using protparam, which computes various physico-chemical properties from protein sequences. Various parameters studied using protparam are molecular weight, theoretical pi, half-life, GRAVY, aliphatic index, instability index [11, 12], results are given in table 1and 2. Secondary structure analysis was done using sopma, which indicates whether a given amino acid lies in a helix, strand or coil, results are computed in table 3 and 4.

Table 1. Primary Structure Analysis of EGFR

| SL.NO | PDB ID | Molecular <br> weight | Theoretical <br> pi | Half life <br> (hr.) | Aliphatic <br> index | Extinction <br> coefficient <br> $\mathrm{m}-1 \mathrm{~cm}-1$ | GRAVY | Instability <br> index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 M14 | 37827.7 | 5.67 | 30 | 94.26 | 52745 | -0.221 | 43.79 |
| 2 | 1 M17 | 37827.7 | 5.67 | 30 | 94.26 | 52745 | -0.221 | 43.49 |
| 3 | 1 XKK | 40269 | 5.88 | 30 | 91.11 | 52725 | -0.315 | 42.52 |
| 4 | 2 GS 2 | 37516.4 | 5.59 | 30 | 95.12 | 52745 | -0.208 | 43.47 |
| 5 | 2GS6 | 41363.4 | 5.10 | 30 | 90.27 | 54360 | -0.305 | 45.47 |
| 6 | 2JSF | 37257.1 | 5.59 | 30 | 95.69 | 52745 | -0.220 | 44.04 |
| 7 | 2J6M | 37257.1 | 5.59 | 30 | 95.69 | 52745 | -0.220 | 44.04 |
| 8 | 2ITY | 3707.9 | 5.70 | 4.4 | 96.28 | 52745 | -0.210 | 44.48 |
| 9 | 2ITX | 37257.1 | 5.59 | 30 | 95.69 | 52745 | -0.220 | 44.04 |
| 10 | 2 ITW | 37257.1 | 5.59 | 30 | 95.69 | 52745 | -0.220 | 44.04 |

Table. 2 Primary structure analysis of CDK2

| SL.NO | PDB ID | Molecular <br> weight | Theoretical <br> pi | Half <br> life <br> (hr.) | Aliphatic <br> index | Extinction <br> coefficient <br> $\mathbf{m - 1 \mathbf { c m } - \mathbf { 1 }}$ | GRAVY | Instability <br> index |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 2KW6 | 7421.4 | 9.43 | 30 | 81.23 | 2980 | -0.729 | 56056 |
| 2 | 2M1L | 7631.7 | 9.42 | 1.9 | 70.87 | 2980 | -0.577 | 55.48 |

Table. 3 Secondary structure analysis of EGFR

| SL.NO | PDB ID | Alpha helix | Extended strand | Beta turn | Random coil |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1M14 | 157 | 57 | 35 | 81 |
| 2 | 1M17 | 157 | 57 | 35 | 84 |
| 3 | 1XKK | 157 | 62 | 33 | 100 |
| 4 | 2GS2 | 157 | 55 | 32 | 86 |
| 5 | 2GS6 | 157 | 55 | 32 | 86 |
| 6 | 2JSF | 157 | 55 | 32 | 83 |
| 7 | 2J6M | 157 | 55 | 32 | 83 |
| 8 | 2ITY | 157 | 55 | 32 | 81 |
| 9 | 2ITX | 157 | 55 | 32 | 83 |
| 10 | 2ITW | 157 | 55 | 32 | 83 |

Table. 4 Secondary structure analysis of CDK2

| SL.NO | PDB ID | Alpha helix | Extended strand | Beta turn | Random coil |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2KW6 | 50 | 1 | 1 | 13 |
| 2 | 2M1L | 45 | 4 | 3 | 17 |

From primary and secondary structure analysis parameters like half-life and random coil coefficient were considered for the selection of targets. Targets that show highest value in both the parameters were selected as targets for docking analysis.

## Preparation of ligands

The ligands were designed from chemsketch and saved in PDB format, their smiles notation were also obtained from same. Chemsketch is chemically intelligent drawing interface software developed by Advanced Chemistry Department.

## Validation of ligands

Drug likeness is a parameter that helps to determine the various molecular properties of compound in conjugation with the pharmacophore. This was determined using an online software Molinspiration, using this software molecular properties based on Lipinski rule of five and drug ADME profile was also checked.Various parameter are determined which include log p, number of hydrogen bond donor or acceptors which is necessary for eliminating non-drug like molecules[13].The results are compiled in table 6 and 7.

## Docking study:

## Molecular docking

Docking is a method, which predicts the preferred orientation of one molecule to a second when bound to each other to form a stable complex.In this study docking was carried out usingAutoDock4. After the energy minimisation of ligand and protein, water molecules are removed and docked with the lead molecules to get the docking score. The results are computed in table 8 and 10 . The selected targets were also docked with the phytoconstituents having coumarin nucleus and the standard drug used in the treatment of inflammation as well as the cancer and the results are computed in table 9 and 11.

## Results and Discussion

Table. 6 Analysis of Lipinski rule of five for novel proposed analogues of coumarin

| Sl.No | Name of the compound | Molecular Weight | No.of Hba | No.of Hbd | $C \log p$ | No of Rot.b | No.of Violations |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5-chloro-3-[(2E)-3-phenylprop-2-enoyl]- <br> 2 H -chromen-2-one | 310.74 | 3 | 0 | 4.45 | 3 | 0 |
| 2 | 6-chloro-3-[(2E)-3-phenylprop-2-enoyl]2 H -chromen-2-one | 310.74 | 3 | 0 | 4.47 | 3 | 0 |
| 3 | 7-chloro-3-[(2E)-3-phenylprop-2-enoyl]-2H-chromen-2-one | 310.74 | 3 | 0 | 4.47 | 3 | 0 |
| 4 | 8-chloro-3-[(2E)-3-phenylprop-2-enoyl]- <br> 2 H -chromen-2-one | 310.74 | 3 | 0 | 4.45 | 3 | 0 |
| 5 | 5-bromo-3-[(2E)-3-phenylprop-2-enoyl]2 H -chromen-2-one | 355.19 | 3 | 0 | 4.58 | 3 | 0 |
| 6 | 6-bromo-3-[(2E)-3-phenylprop-2-enoyl]- <br> 2 H -chromen-2-one | 355.19 | 3 | 0 | 4.6 | 3 | 0 |
| 7 | 7-bromo-3-[(2E)-3-phenylprop-2-enoyl]2 H -chromen-2-one | 355.19 | 3 | 0 | 4.6 | 3 | 0 |
| 8 | 8-bromo-3-[(2E)-3-phenylprop-2-enoyl]- <br> 2 H -chromen-2-one | 355.19 | 3 | 0 | 4.58 | 3 | 0 |
| 9 | 5-fluoro-3-[(2E)-3-phenylprop-2-enoyl]2 H -chromen-2-one | 294.28 | 3 | 0 | 2.98 | 3 | 0 |
| 10 | 6-fluoro-3-[(2E)-3-phenylprop-2-enoyl]- $2 \mathrm{H} \text {-chromen-2-one }$ | 294.28 | 3 | 0 | 3.96 | 3 | 0 |
| 11 | 7-fluoro-3-[(2E)-3-phenylprop-2-enoyl]2 H -chromen-2-one | 294.28 | 3 | 0 | 3.96 | 3 | 0 |
| 12 | 8-fluoro-3-[(2E)-3-phenylprop-2-enoyl]- <br> 2 H -chromen-2-one | 294.28 | 3 | 0 | 3.93 | 3 | 0 |
| 13 | 5-hydroxy-3-[(2E)-3-phenylprop-2-enoyl]-2H-chromen-2-one | 292.29 | 4 | 1 | 3.55 | 3 | 0 |
| 14 | 6-hydroxy-3-[(2E)-3-phenylprop-2-enoyl]-2H-chromen-2-one | 292.29 | 4 | 1 | 3.31 | 3 | 0 |
| 15 | 7-hydroxy-3-[(2E)-3-phenylprop-2-enoyl]-2H-chromen-2-one | 292.29 | 4 | 1 | 3.31 | 3 | 0 |
| 16 | 8-hydroxy-3-[(2E)-3-phenylprop-2-enoyl]-2H-chromen-2-one | 292.29 | 4 | 1 | 3.55 | 3 | 0 |
| 17 | 5-methyl-3-[(2E)-3-phenylprop-2-enoyl]2 H -chromen-2-one | 290.32 | 3 | 0 | 4.22 | 4 | 0 |

The results for validation of ligands shows that values of all twenty eight compounds based on molecular weight is less than 500 Daltons,no.of hydrogen bond donors and acceptors are below 5 and 10, partition coefficient is within the limit ,this shows that there is no violation of Lipinski rule of 5 .

Thomas R A et al., J. innov. appl. pharm. Sci, 8[3-S] 2023, 29-35
Table. 7 Bioactivity results of proposed analogues of coumarin

| Sl.No | GPCR Ligand | Ion channel modulator | Kinase Inhibitor | Nuclear Receptor Ligand | Protease <br> Inhibitor | Enzyme Inhibitor |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | -0.42 | -0.49 | -0.54 | -0.23 | -0.37 | -0.12 |
| 2 | -0.4 | -0.53 | -0.56 | -0.22 | -0.34 | -0.11 |
| 3 | -0.37 | -0.48 | -0.62 | -0.19 | -0.35 | -0.08 |
| 4 | -0.49 | -0.67 | -0.6 | -0.21 | -0.35 | -0.09 |
| 5 | -0.44 | -0.66 | -0.5 | -0.27 | -0.41 | -0.13 |
| 6 | -0.54 | -0.65 | -0.6 | -0.38 | -0.47 | -0.17 |
| 8 | -0.21 | -0.68 | -0.66 | -0.3 | -0.4 | -0.1 |
| 9 | -0.33 | -0.51 | -0.42 | -0.14 | -0.33 | -0.08 |
| 10 | -0.36 | -0.54 | -0.51 | -0.16 | -0.35 | -0.07 |
| 11 | -0.29 | -0.47 | -0.47 | -0.22 | -0.31 | -0.06 |
| 12 | -0.41 | -0.49 | -0.5 | -0.07 | -0.34 | -0.03 |
| 13 | -0.37 | -0.45 | -0.52 | -0.14 | -0.26 | -0.03 |
| 14 | -0.33 | -0.48 | -0.46 | -0.02 | -0.31 | -0.01 |
| 15 | -0.36 | -0.51 | -0.5 | -0.03 | -0.33 | 0 |
| 16 | -0.37 | -0.47 | -0.5 | -0.13 | -0.23 | 0.06 |
| 17 | -0.46 | -0.75 | -0.55 | -0.21 | -0.42 | -0.14 |
| 18 | -0.45 | -0.61 | -0.6 | -0.24 | -0.38 | -0.14 |
| 19 | -0.44 | -0.61 | -0.62 | -0.26 | -0.4 | -0.15 |
| 20 | -0.51 | -0.71 | -0.64 | -0.22 | -0.46 | -0.12 |
| 21 | -0.37 | -0.6 | -0.54 | -0.14 | -0.32 | -0.07 |
| 22 | -0.35 | -0.5 | -0.58 | -0.15 | -0.26 | -0.07 |
| 23 | -0.35 | -0.49 | -0.6 | -0.16 | -0.28 | -0.07 |
| 24 | -0.32 | -0.66 | -0.59 | -0.14 | -0.4 | -0.09 |
| 25 | -0.43 | -0.61 | -0.44 | -0.04 | -0.45 | -0.11 |
| 26 | -0.46 | -0.54 | -0.55 | -0.12 | -0.45 | -0.12 |
| 27 | -0.46 | -0.54 | -0.57 | -0.14 | -0.46 | -0.12 |
| 28 | -0.42 | -0.62 | -0.51 | -0.14 | -0.47 | -0.13 |

## Docking Analysis

Docking scores for coumarin derivatives against EGFR is given in table. 8 and the docking score for phytoconstituents having coumarin pharmacophore is given in table. 9

Table. 8 Docking scores for novel proposed analogues of coumarin against EGFR

| SL.No | Substitution | Docking Score <br> $(\mathrm{kcal} / \mathrm{mol})$ |
| :---: | :--- | :---: |
| 1 | 5-chloro-3-[(2E)-3-phenylprop-2-enoyl]-2H-chromen-2-one | -6.5563 |
| 2 | 6-chloro-3-[(2E)-3-phenylprop-2-enoyl]-2H-chromen-2-one | -9.02525 |
| 3 | 7-chloro-3-[(2E)-3-phenylprop-2-enoyl]-2H-chromen-2-one | -9.50823 |
| 4 | 8-chloro-3-[(2E)-3-phenylprop-2-enoyl]-2H-chromen-2-one | -9.07289 |
| 5 | 5-bromo-3-[(2E)-3-phenylprop-2-enoyl]-2H-chromen-2-one | -6.97647 |
| 6 | 6-bromo-3-[(2E)-3-phenylprop-2-enoyl]-2H-chromen-2-one | -9.50701 |
| 7 | 7-bromo-3-[(2E)-3-phenylprop-2-enoyl]-2H-chromen-2-one | -5.73848 |
| 8 | 8-bromo-3-[(2E)-3-phenylprop-2-enoyl]-2H-chromen-2-one | -6.57724 |

Thomas R A et al., J. innov. appl. pharm. Sci, 8[3-S] 2023, 29-35

| 9 | 5-fluoro-3-[(2E)-3-phenylprop-2-enoyl]-2H-chromen-2-one | -8.00148 |
| :---: | :---: | :---: |
| 10 | 6-fluoro-3-[(2E)-3-phenylprop-2-enoyl]-2H-chromen-2-one | -9.38909 |
| 11 | 7-fluoro-3-[(2E)-3-phenylprop-2-enoyl]-2H-chromen-2-one | -6.80107 |
| 12 | 8-fluoro-3-[(2E)-3-phenylprop-2-enoyl]-2H-chromen-2-one | -9.5179 |
| 13 | 5-hydroxy-3-[(2E)-3-phenylprop-2-enoyl]-2H-chromen-2-one | -7.57281 |
| 14 | 6-hydroxy-3-[(2E)-3-phenylprop-2-enoyl]-2H-chromen-2-one | -9.35864 |
| 15 | 7-hydroxy-3-[(2E)-3-phenylprop-2-enoyl]-2H-chromen-2-one | -9.79347 |
| 16 | 8-hydroxy-3-[(2E)-3-phenylprop-2-enoyl]-2H-chromen-2-one | -9.36727 |
| 17 | 5-methyl-3-[(2E)-3-phenylprop-2-enoyl]-2H-chromen-2-one | -7.24347 |
| 18 | 6-methyl-3-[(2E)-3-phenylprop-2-enoyl]-2H-chromen-2-one | -8.28572 |
| 19 | 7-methyl-3-[(2E)-3-phenylprop-2-enoyl]-2H-chromen-2-one | -9.48994 |
| 20 | 8-methyl-3-[(2E)-3-phenylprop-2-enoyl]-2H-chromen-2-one | -10.0089 |
| 21 | 5-ethyl-3-[(2E)-3-phenylprop-2-enoyl]-2H-chromen-2-one | -8.07182 |
| 22 | 6-ethyl-3-[(2E)-3-phenylprop-2-enoyl]-2H-chromen-2-one | -8.92836 |
| 23 | 7-ethyl-3-[(2E)-3-phenylprop-2-enoyl]-2H-chromen-2-one | -6.9066 |
| 24 | 8-ethyl-3-[(2E)-3-phenylprop-2-enoyl]-2H-chromen-2-one | -6.90994 |
| 25 | 2-oxo-3-[(2E)-3-phenylprop-2-enoyl]-2H-chromene-5-carbaldehyde | -8.78985 |
| 26 | 2-oxo-3-[(2E)-3-phenylprop-2-enoyl]-2H-chromene-6-carbaldehyde | $-7.6281$ |
| 27 | 2-oxo-3-[(2E)-3-phenylprop-2-enoyl]-2H-chromene-7-carbaldehyde | -9.69306 |
| 28 | 2-oxo-3-[(2E)-3-phenylprop-2-enoyl]-2H-chromene-8-carbaldehyde | -8.43019 |

Table. 9 Docking scores of phytoconstituents having coumarin pharmacophore against EGFR

| SL.NO | Phytoconstituents | Docking score (kcal/mol) |
| :---: | :---: | :---: |
| 1 | Isofraxidin | -6.608 |
| 2 | Scopoletin | -6.219 |

Docking score for coumarin derivatives against CDK2 is given in table. 10 and the docking score of phytoconstituents against CDK2 is given in table. 11
Table. 10 Docking scores for novel proposed analogues of coumarin against CDK2

| SL.No | Substitution | Docking Score <br> $(\mathrm{Kcal} / \mathrm{mol})$ |
| :---: | :--- | :---: |
| 1 | 5-chloro-3-[(2E)-3-phenylprop-2-enoyl]-2H-chromen-2-one | -9.08063 |
| 2 | 6-chloro-3-[(2E)-3-phenylprop-2-enoyl]-2H-chromen-2-one | -7.17984 |
| 3 | 7-chloro-3-[(2E)-3-phenylprop-2-enoyl]-2H-chromen-2-one | -6.23813 |
| 4 | 8-chloro-3-[(2E)-3-phenylprop-2-enoyl]-2H-chromen-2-one | -6.17164 |
| 5 | 5-bromo-3-[(2E)-3-phenylprop-2-enoyl]-2H-chromen-2-one | -7.86579 |
| 6 | 6-bromo-3-[(2E)-3-phenylprop-2-enoyl]-2H-chromen-2-one | -8.25594 |
| 7 | 7-bromo-3-[(2E)-3-phenylprop-2-enoyl]-2H-chromen-2-one | -7.2153 |
| 8 | 8-bromo-3-[(2E)-3-phenylprop-2-enoyl]-2H-chromen-2-one | -6.37073 |

Thomas R A et al., J. innov. appl. pharm. Sci, 8[3-S] 2023, 29-35

| 9 | 5-fluoro-3-[(2E)-3-phenylprop-2-enoyl]-2H-chromen-2-one | -6.24518 |
| :---: | :---: | :---: |
| 10 | 6-fluoro-3-[(2E)-3-phenylprop-2-enoyl]-2H-chromen-2-one | -6.05296 |
| 11 | 7-fluoro-3-[(2E)-3-phenylprop-2-enoyl]-2H-chromen-2-one | -6.63018 |
| 12 | 8-fluoro-3-[(2E)-3-phenylprop-2-enoyl]-2H-chromen-2-one | -6.2655 |
| 13 | 5-hydroxy-3-[(2E)-3-phenylprop-2-enoyl]-2H-chromen-2-one | -7.59957 |
| 14 | 6-hydroxy-3-[(2E)-3-phenylprop-2-enoyl]-2H-chromen-2-one | -7.93164 |
| 15 | 7-hydroxy-3-[(2E)-3-phenylprop-2-enoyl]-2H-chromen-2-one | -6.27102 |
| 16 | 8-hydroxy-3-[(2E)-3-phenylprop-2-enoyl]-2H-chromen-2-one | -6.91668 |
| 17 | 5-methyl-3-[(2E)-3-phenylprop-2-enoyl]-2H-chromen-2-one | -6.24409 |
| 18 | 6-methyl-3-[(2E)-3-phenylprop-2-enoyl]-2H-chromen-2-one | -6.40065 |
| 19 | 7-methyl-3-[(2E)-3-phenylprop-2-enoyl]-2H-chromen-2-one | -6.12575 |
| 20 | 8-methyl-3-[(2E)-3-phenylprop-2-enoyl]-2H-chromen-2-one | -6.45836 |
| 21 | 5-ethyl-3-[(2E)-3-phenylprop-2-enoyl]-2H-chromen-2-one | -7.10218 |
| 22 | 6-ethyl-3-[(2E)-3-phenylprop-2-enoyl]-2H-chromen-2-one | -8.49001 |
| 23 | 7-ethyl-3-[(2E)-3-phenylprop-2-enoyl]-2H-chromen-2-one | -8.49001 |
| 24 | 8-ethyl-3-[(2E)-3-phenylprop-2-enoyl]-2H-chromen-2-one | -6.01942 |
| 25 | 2-oxo-3-[(2E)-3-phenylprop-2-enoyl]-2H-chromene-5-carbaldehyde | -6.59915 |
| 26 | 2-oxo-3-[(2E)-3-phenylprop-2-enoyl]-2H-chromene-6-carbaldehyde | -7.13007 |
| 27 | 2-oxo-3-[(2E)-3-phenylprop-2-enoyl]-2H-chromene-7-carbaldehyde | -6.66722 |
| 28 | 2-oxo-3-[(2E)-3-phenylprop-2-enoyl]-2H-chromene-8-carbaldehyde | -6.12156 |

Table. 11 Docking scores of phytoconstituents having coumarin pharmacophore against CDK2

| SL.NO | Phytoconstituents | Docking score <br> $(\mathrm{kcal} / \mathrm{mol})$ |
| :---: | :---: | :---: |
| 1 | Isofraxidin | -6.369 |
| 2 | Scopoletin | -6.03 |

Docking analysis of coumarin derivatives with methyl substitution at 8th position shows highest score against EGFR.(Fig.2)


Fig. 2 8-methyl-3-[(2E)-3-phenylprop-2-enoyl]-2H-chromen-2-one
Docking analysis of coumarin derivatives with chlorine substitution at the 5th position shows highest score against CDK2.(Fig.3)


Fig. 3 5-chloro-3-[(2E)-3-phenylprop-2-enoyl]-2H-chromen-2-one

Among twenty eight compounds fifteen of them show good score against EGFR and seven of them show good score against CDK2 as compared to the standard drug piroxicam.

## Conclusion

Docking studies conducted in coumarin derivatives against CDK2 and EGFR for anti-inflammatory as well as anti-cancer activities was successful and it was found that among the two targets, EGFR showed good affinity towards the fifteen proposed analogues, and in that methyl substitution at the 8th position of the coumarin scaffold showed the best docking score as compared to the standard drug piroxicam and the two phytoconstituents whereas CDK2 showed good affinity towards seven proposed analogues among them chlorine substitution at 5 th position shows highest score as compared to standard and two phytoconstituents. From this study we came to a conclusion that, among twenty eight ligands the best ligand for anti-inflammatory and anti-cancer activity was obtained when the coumarin derivative is substituted with methyl group at 8th position and chlorine atom at 5th position.

## Reference

1. Wallace B. Morrison. Inflammation and cancer: A comparative view. International Journal of Vetinary Medicine.2012, 26, 18-31.
2. P.K Jain, Himashu Joshi. Coumarin: chemical and pharmacological profile. Journal Of Applied Pharmaceutical Science.2012, 2, 6,236-40.
3. Aoife Lacy and Richard 0' Kennedy. Studies on Coumarin and Coumarin -Related compounds to determine their therapeutic role in the treatment of cancer. Current Pharmaceutical Design .2004, 10, 3797-3811.
4. Nicola Normanno, Antonella De Luca, Caterina Bianco et.al.Epidermal Growth Factor receptor signalling in cancer.Gene.2006,366,1,2-12.
5. B.Rude Voldborg, Damstrup, M.Spang- Thomsen, H.Skovgaard Poulsen. Epidermal Growth Factor receptor (EGFR) and EGFR mutations, function and possible role in clinical trials. Annals of Oncology.1997, 8, 12, 1197-1206.
6. Arun kumar V.A, Keshav Mohan. Insights into binding of potential antitumour qunoxaline analogues against cyclin dependent kinase 2 using docking studies. Journal of chemical, biological and physical sciences.2012, 4, 2, 2419-274.
7. Sunil H Ganatra, Amita S Suchak.Inhibition Studies of Naturally Occuring Terpene based compounds with Cyclin - Dependent kinase 2 enzymes .Journal of computer Science system biology.2012, 5, 2, 68-73.
8. Susmi M.S, Revathy S Kumar, Sreelakshmi V et.al. A computational approach for identification of phytochemicals for targeting and optimizing the inhibitors of heat shock proteins. Research Journalof Pharmacy and Technology.2015, 8, 9, 1199-1204.
9. Elizabet R.Rayburn, Scharri J.Ezell and Ruiwen Zhang. Anti -inflammatory agents for cancer therapy. Journal of molecular cell pharmacology.2009, 1, 1, 29-43.
10. S.Mirunalini, M. Krishnaveni. Coumarin: A Plant derived polyphenol with wide biomedical applications. International Journal of pharma Tech Research.2011, 3, 3, 1693-96.
11. Pradeep N.V, Anupama, Vidyashree K.G et.al. In silico characterisation of industrial important cellulases using computational tools .Advances in Life Science and Technology.2012, 4, 8-15.
12. Reshma Thomas, R.Hari, Josna Joy et.al. In silico docking approach of coumarin derivatives as an aromatase antagonist. Research journal of pharmacy and technology.2013, 8, 12, 1673-78
13. Sekhar A S, Basker V, Saranya T S, in silico approach of apoptosis induing ability of different indole derivatives by interaction with caspase $9,2016,40,2,92-102$
